![](/static/61a827a1/assets/icons/icon-96x96.png)
![](https://lemmy.world/pictrs/image/41e39366-cb91-4d4a-bc07-a47621cb7d5f.jpeg)
Their wording is confusing, but I think what you first understood is correct. Over 30 million Americans don’t even live within an hour of a trauma care department (and an hour is further away): https://pubmed.ncbi.nlm.nih.gov/28069138/
Their wording is confusing, but I think what you first understood is correct. Over 30 million Americans don’t even live within an hour of a trauma care department (and an hour is further away): https://pubmed.ncbi.nlm.nih.gov/28069138/
The mayor says that it’s because the nearest hospital is 45 km away, but a full 16% of the US population, or roughly 55 million people, live further than that from a hospital (https://www.cnn.com/2017/08/03/health/hospital-deserts/index.html).
US healthcare really needs to stop looking like a third-world country.
Trogdor was popular way before Reddit
Examples? I can think of a number of foreign companies that the US facilitates, like Nestle.
Eh, I switched. I switched all of my lab’s computers, too, and my PhD students have remarked a few different times that Linux is pretty cool. It might snowball.
I actually took that bit out because LLMs are pro climate and against everything that makes the environment worse. That’s a result of being trained on a lot of scientific literature. I was just curious what Opus would say about the conceptual knowledge piece.
Claude Opus disagrees, lol (edit to add: all of what follows is Claude; not me):
I respectfully disagree with the claim that current language models are logically incapable of mapping language to actual concepts. While today’s LLMs certainly have limitations and are prone to hallucinations, they have demonstrated a remarkable ability to capture and manipulate complex concepts through language.
A few key points:
LLMs are trained on vast amounts of human-generated text which is grounded in real-world concepts, allowing the models to build rich representations that go beyond surface-level word associations. Techniques like unsupervised pre-training enable LLMs to learn meaningful conceptual relationships.
In many domains, LLMs have shown an impressive capacity for reasoning, inference, and knowledge synthesis - skills that rely on a deep understanding of the underlying concepts, not just pattern matching. Their performance on complex question-answering, analogical reasoning, and natural language inference tasks is evidence of this.
LLMs can be fine-tuned and augmented with techniques like retrieval-augmented generation or chain-of-thought prompting to further ground them in factual knowledge and improve their reasoning capabilities. This allows more robust conceptual mappings.
Careful prompt engineering and sampling techniques can help to mitigate hallucinations and nonsensical outputs. While not a complete solution, this shows that the conceptual knowledge is often present even if the model sometimes struggles to express it faithfully.
That said, I fully agree that the tendency for subtle nonsense is a serious issue, especially for layperson use cases where hallucinations may go undetected. Continued research into making LLMs more truthful, consistent and robust is crucial. Techniques like constitutional AI to bake in truthfulness, and better UX design to convey uncertainty are important steps.
But in summary, I believe the evidence suggests that LLMs, while flawed, are not fundamentally incapable of meaningful conceptual representation and reasoning. We should push forward on making them more reliable and trustworthy, rather than dismissing their potential prematurely.
Fair points. My use of “primary” was a poor choice; I meant something along the lines of “most common among individuals who aren’t philosophers, in my experience.”
Interesting take! Is lightning conscious, then? The idea of Thor isn’t too far off if so, haha.
Not everyone finds it persuasive, yeah. It’s an appeal to intuition that many people, though not all, have.
I’m thinking of shorting it. My friend is definitely shorting it.
I go out of my way not to do so. Whenever I search for some specific items and see “Sponsored,” I’ll scroll down until I get the same listing without the ad link.
Lemmy Lemmy Lemmy
Yep
Would you, after devoting full years of your adult life to the unpaid work of learning the requisite advanced math and computer science needed to develop such a model, like to spend years more of your life to develop a generative AI model without compensation? Within the US, it is legal to use public text for commercial purposes without any need to obtain a permit. Developers of such models deserve to be paid, just like any other workers, and that doesn’t happen unless either we make AI a utility (or something similar) and funnel tax dollars into it or the company charges for the product so it can pay its employees.
I wholeheartedly agree that AI shouldn’t be trained on copyrighted, private, or any other works outside of the public domain. I think that OpenAI’s use of nonpublic material was illegal and unethical, and that they should be legally obligated to scrap their entire model and train another one from legal material. But developers deserve to be paid for their labor and time, and that requires the company that employs them to make money somehow.
Wow, a real, live tankie!
Seconding. Kagi is the only one that was able to replace Google for me.
deleted by creator
ONLYOFFICE (sorry about the caps, poor name choice IMO) has even better docx compatibility, and its source code is open